Multi-phase Three-Dimensional Level Set Segmentation of Brain MRI

نویسندگان

  • Elsa D. Angelini
  • Ting Song
  • Brett D. Mensh
  • Andrew F. Laine
چکیده

This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of cortical structures on brain T1 MRIs. The segmentation algorithm performed an optimal partitioning of threedimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up numerical computation and avoid the need for a priori information. A simple post-processing, based on morphological operators, was applied to correct for segmentation artifacts. The segmentation method was tested on ten MRI brain data sets and quantitative evaluation was performed with comparison to manually labeled data, Computation of false positive and false negative assignments of voxels for white matter, gray matter and cerebrospinal fluid were performed. Results reported high accuracy of the segmentation methods, demonstrating the efficiency and flexibility of the multi-phase level set segmentation framework to perform the challenging task of automatically extracting cortical brain tissue volume contours.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation and quantitative evaluation of brain MRI data with a multi-phase three-dimensional implicit deformable model

Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of th...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Brain MRI Segmentation with Multiphase Minimal Partitioning: A Comparative Study

This paper presents the implementation and quantitative evaluation of a multiphase three-dimensional deformable model in a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed ini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004